
ELMB firmware framework v1.1 10-Mar-2004

1

CANopen
Firmware Framework

for the ELMB
(Embedded Local Monitor Board)

Version 1.1

(ELMB128, approximate true size)

Henk Boterenbrood
(boterenbrood@nikhef.nl)

NIKHEF, Amsterdam
10 Mar 2004

ELMB firmware framework v1.1 10-Mar-2004

2

Contents

1 INTRODUCTION.. 3
1.1 HARDWARE .. 3
1.2 SOFTWARE.. 7

2 USING THE FRAMEWORK... 8
2.1 INTRODUCTION ... 8
2.2 ADDING YOUR CODE ... 8
2.3 SOME USEFUL GENERAL-PURPOSE FUNCTIONS.. 12

2.3.1 Timer Functions .. 12
2.3.2 EEPROM Functions.. 14

2.4 EEPROM MEMORY MAP... 15
2.5 LIST OF FILES ... 15

3 HOW IT WORKS .. 16
3.1 SETTING CAN NODE IDENTIFIER AND BAUDRATE ... 16
3.2 INITIALISATION... 16
3.3 NODE GUARDING AND LIFE GUARDING.. 17
3.4 ACCESSING THE OBJECT DICTIONARY USING SDO MESSAGES..................................... 19
3.5 DATA READ-OUT USING PDO MESSAGES... 19
3.6 STORING PARAMETERS AND SETTINGS IN NON-VOLATILE MEMORY 19

4 OBJECT DICTIONARY... 20

5 EMERGENCY OBJECTS .. 27

REFERENCES.. 28

Version History
Version Date Comments

1.1 10 Mar 2004 Major update.

1.0 7 Mar 2003 First version.

0.0 Mar 2003 Draft version.

Table 1. Document change record.

ELMB firmware framework v1.1 10-Mar-2004

3

1 Introduction

1.1 Hardware

The Embedded Local Monitor Board (ELMB) is a plug-on board designed for the ATLAS
experiment, where it will be used for a range of different control and monitoring tasks.

It was designed with low-power, low-cost and high I/O-channel density in mind. Tolerance
to radiation is another very important issue, and extensive radiation tests have been carried out
to determine the ELMB’s (non-)sensitivity to TID, NIEL and SEE.

The ELMB contains an 8-bit microcontroller, a CAN-controller and CAN-bus driver. Op-

tionally the ELMB is equipped with a 16-bit ADC (Crystal CS5523) and multiplexor circuitry
for 64 analog inputs.

The microcontroller is In-System-Programmable via an onboard connector, but is also In-
Application-Programmable via the CAN-bus, enabling true remote firmware upgrades.

A block diagram of the ELMB is shown in Figure 1.

The CAN bus is the chosen fieldbus by the ATLAS Detector Control System (DCS) for in-

terconnecting distributed I/O within the detector. The CANopen protocol [1] has been adopted
as the communication protocol standard to be used on the CAN-bus.

The latest version of the ELMB is called ELMB128, based on the 8-bit ATMEL AT-

mega128 microcontroller and runs at a clockspeed of 4 MHz. Older versions of the ELMB
are based on the ATmega103 microcontroller, which is the predecessor of the ATmega128.
These two microcontroller types are highly compatible, but the ATmega128 offers extended
features, the self-programming feature being the most important one (removing the need for a
second microcontroller which was present on older types of ELMB).

The microcontroller has 128 Kbyte of Flash-memory, 4 kByte of SRAM, 4 Kbytes of
EEPROM and a number of on-chip peripherals including 4 timer/counters and general-
purpose I/O pins.

The onboard CAN-controller is the Infineon 81C91, a socalled 'Full-CAN Controller' with

buffers for 16 different messages.

The board is also fitted with opto-couplers to decouple the board from CAN-bus and the

analog part with ADC (if present).

Note that to control the ADC the ADC’s SPI interface (3 lines) as well as 2 extra lines, a
chip-select signal (CS) and a socalled 'latch' signal (Latch) are necessary, requiring 5 lines in
total. These must be taken from the ELMB’s general-purpose lines available and routed via a
motherboard to the ADC, if the ELMB microcontroller must control the ADC.

Also note that the 3 digital I/O lines (that also constitute an SPI interface on the microcon-
troller) are used to control the CAN-controller, and should thus be used with care (external
devices controlled through it should have a select/deselect-signal).

ELMB firmware framework v1.1 10-Mar-2004

4

Figure 1. Block diagram of the ELMB128 module. Of the 37 Dig I/O lines 5 would be
needed to control the ADC.

ATmega128
microcontroller

128K FLASH,
4K RAM,

4K EEPROM,
8-chan 10-bit ADC

CAN
controller

(81C91)

DIP-switches (Node-ID / Baudrate)

Driver +
Opto

General-
purpose
Dig. I/O
(37 In/Out,

of which 8 may
be dedicated to

the 10-bit
onchip ADC)

16-bit
ADC

(CS5523)

Opto

MUX
optional

Analog-In
(64x)

ELMB128

SCK, MISO, MOSI (ISP), RESET Programmer,
RS232

SPI
2

CS, Latch

2

3

4

SCLK, SDI

Dig I/O (SPI)

INT Voltage
Regulators,

Reset

 SDO

SPI

3

Latch

ELMB firmware framework v1.1 10-Mar-2004

5

Table 2 shows a list of the microcontroller’s I/O port pins and their availability to the ELMB

user.

In addition to the I/O pins in the table the microcontroller pins ALE, RD_ and WR_ are ex-
ternally available, enabling the use of external RAM (up to 64 kByte) using PORTA and
PORTC as addressbus/databus. Alternatively these pins can be used as general-purpose I/O-
pins (Port G, see ATmega128 datasheet).

I/O PORT: A B C D E F
Function: In/Out In/Out In/Out In/Out In/Out I/O/ADC
pin 0 a — a — (i) — a
pin 1 a SCLK a — (i) — a
pin 2 a SDI a — (i) — a
pin 3 a SDO a a(i) a a
pin 4 a — a a a(i) a
pin 5 a — a a a(i) a
pin 6 a — a a a(i) a
pin 7 a — a a a(i) a

Table 2. ELMB microcontroller (ATmega128) I/O pins, their function and/or availability
for user applications.
— = NOT freely available (see Table 3).
a = available for general use.
(i) = has external interrupt capability.
SCLK/SDI/SDO = lines carrying SPI-protocol for communication with
 the onboard CAN-controller.
In addition to the port pins shown in the table the ELMB128 has 3 extra I/O pins available
on its external connectors: G0, G1 and G2 (marked on the ELMB external connector lay-
out as WR, RD and ALE).

ELMB firmware framework v1.1 10-Mar-2004

6

Table 3 below lists the functions of the microcontroller I/O pins not freely available for user

purposes (or with restrictions). They are for ELMB-specific purposes, such as reading the
DIP-switches, operating the CAN-controller and connecting to an external Program-
mer/RS232-interface. This is important information only for developers of ELMB software.

I/O PORT B D E

pin 0 DIP-8/DIP-2 Slave RESET Slave-ISP data out,
ISP data out,

RXD0
pin 1 SCLK,

DIP-7/DIP-1,
ISP clock in

Slave-to-Master,
CAN interrupt,

Slave-ISP clock out

Slave-ISP data in,
ISP data in,

TXD0
pin 2 SDI, DIP-6 Master-to-Slave,

Slave-to-Master
enable read DIP-1 to 2

pin 3 SDO, DIP-5
pin 4 DIP-4
pin 5 CAN rd/wr, DIP-3
pin 6 CAN chip select
pin 7 enable read DIP-3 to 8

Table 3. ELMB-specific microcontroller I/O pin functions.
DIP-x = DIP-switch x.
ISP = In-System-Programming, via the Programmer connector.
TXD0/RXD0 = serial output/input lines, via the Programmer connector.
Greyed-out functions are obsolete (‘Slave’ refers to the secondary microcontroller
which is present on older types of ELMB).
To read DIP-3 to DIP-8 switches PORTB pin 7 must be set low. To read DIP-1 and
DIP-2 switches PORTE pin 2 must be set low.
(the framework software described in the next sections uses DIP-1 and DIP-2 for
the CAN-bus baudrate setting and DIP-3 to DIP-8 for the module's Node-ID)

Further and full details about the ELMB schematics, hardware and radiation tests can be ob-

tained from the ELMB webpages1.

1 http://elmb.web.cern.ch/

ELMB firmware framework v1.1 10-Mar-2004

7

1.2 Software

The rest of this document describes a CANopen firmware framework for the ELMB and

ELMB128, developed for developers of ELMB custom application software.

The framework consists of a set of source code files that comprise a fully functional

CANopen application for the ELMB's ATmega microcontroller. It is easily extendible by
ELMB users who want to develop custom application firmware. They may use this frame-
work as a starting point and can extend, modify and add to the existing source code and focus
on the implementation of their front-end Detector Control System application, because many
of the details of the CAN and CANopen operations are handled by the framework.

The framework as-is is a ready-to-run application, which can be compiled for both types of

ELMB (i.e. with or without the secondary so-called ‘Slave’ processor which on the ELMB103
performs the firmware-upgrade and watchdog functions), by means of compile-time defines,
as listed in the ‘Compile Options’ table in section 4.

The framework firmware provides:

• CANopen Network Management (NMT)
• a CANopen SDO server for reading and writing the Object Dictionary (expedited

message transfer only)
• a basic Object Dictionary (see section 4)
• a CANopen PDO skeleton for 4 TPDOs and 4 RPDOs
• CANopen Nodeguarding/Heartbeat
• CANopen Lifeguarding
• Configuration storage in EEPROM
• access to Serial Number and ADC calibration constants (data stored in EEPROM

during the ELMB production)
• interaction with and reprogramming of the Slave processor (only for the older

ELMB version with ATmega103 microcontroller)
• Timer functions for busy-wait delays, time-outs and periodic actions
• Watchdog timer support
• ELMB CANopen Bootloader support
• Several mechanisms to improve the application’s radiation-tolerance, some of which

are optional at compile time (can be switched off when radiation-tolerance is not an
issue).

• CAN-controller library based on interrupt-based CAN-message reception and mes-
sage buffering (up to 64 messages; no priority scheme implemented for this buffer)

ELMB firmware framework v1.1 10-Mar-2004

8

2 Using the Framework

2.1 Introduction

The framework files include a project file for the ICCAVR development toolset. Open the
project's 'Options' dialog to set the paths to match your installation. Also check the 'Macro De-
fines' and 'Undefines' in the 'Compiler' tab of the 'Options' dialog, to see if they match your
requirements (for a description of the 'defines' see Table 5 in section 4).

Each ELMB module shipped comes programmed with a general-purpose CANopen applica-
tion called ELMBio, which is described elsewhere [2]. Each ELMB also contains a Boot-
loader program, enabling code download via the CAN-bus, so if you have a CAN interface in
your PC, it is easy to reprogram the ELMB with the framework application or your custom
application, using an ELMB download tool.

For documentation on the ELMBio application and download tool(s) for the ELMB, go to

the ELMB software webpage [3].

The first thing you do to develop software for the ELMB is to write the low-level functions

for your specific hardware and to test these with some test program that doesn't use CAN, but
for example simply interacts via the ELMB's serial port with the user.

 Once you are confident that your low-level functions are correct you can integrate them into
the CANopen framework and your application built on top of it. The low-level functions you
developed are typically in a file you then should be able to use unchanged in your CANopen
application.

The way to start developing the actual ELMB CANopen application is to make a list of data

objects you want to monitor or read-out and parameters and settings you want to be able to
read and write to. Then you map this list into objects that can be added to the CANopen Ob-
ject Dictionary of your application (see section 4).

Note that the framework only supports so-called Expedited Transfers for SDOs, meaning
that data objects must be 4 bytes or less in size.

At this point you could already write code to access your objects with SDO messages, be-
cause once you have this you can interactively control your hardware just using SDO mes-
sages, for which simple low-level PC tools are available.

2.2 Adding Your Code

The main entry point for adding code to the framework application software is in files
app.c and app.h. Some comments are added to the various functions in app.c to guide
you further. Most of the functions need filling in, but all of them are functional as-is within
the framework and demonstrate their basic functionality when running the framework as-is.

Note at the top of the file these lines:

/* Include the functions that access your (custom) hardware */
//#include "your_lowlevel_hardware_functions.h"

ELMB firmware framework v1.1 10-Mar-2004

9

It is assumed you will have another file your_lowlevel_hardware_functions.c
containing the low-level functions that deal with the implementation details of your hardware.
The functions in app.c will use these low-level functions to implement their own functional-
ity that is more at the CANopen level.

The following functions have been defined in app.c :
• app_init()

initialises your hardware, including read-out of saved settings.
• app_status()

returns a number of bytes containing status information about your hardware, etc.;
meant to be returned when reading Object 1002 (Manufacturer Status Register).

• app_rpdo1()
processes the data bytes received in an RPDO1 message.

• app_rpdo2()
processes the data bytes received in an RPDO2 message.

• app_rpdo3()
processes the data bytes received in an RPDO3 message.

• app_rpdo4()
processes the data bytes received in an RPDO4 message.

• app_tpdo1()
starts up a multi-channel read-out sequence by making a call to
app_tpdo_scan_start() resulting in multiple TPDO1 messages containing the
proper data, obtained from your hardware (this function could also just generate a single
message; here TPDO1 has been made a multi-channel PDO as an example only);
subsequent repeated calls of tpdo_scan() by the main loop (in ELMBmain.c,
when the node state is Operational) will call –among others– function
app_tpdo_scan() which in its turn calls app_scan_next() which does the ac-
tual data gathering and PDO message creation and sending, one-by-one in subsequent
calls.

• app_tpdo2()
produces a TPDO2 message containing the proper data (obtained from your hardware).

• app_tpdo3()
produces a TPDO3 message containing the proper data (obtained from your hardware).

• app_tpdo4()
produces a TPDO4 message containing the proper data (obtained from your hardware).

• app_tpdo_on_cos()
produces TPDO messages depending on the occurrence of a change-of-state of the ap-
plication (to be defined by you); in the example code TPDO2 is produced but it could be
any other TPDO or even multiple TPDOs; this function is called by tpdo_scan() which
is called by the main loop (in ELMBmain.c, when the node state is Operational).

• app_tpdo_scan_start()
sets a multi-channel TPDO read-out sequence in motion (see app_tpdo1())

• app_tpdo_scan_stop()
does everything necessary to stop an ongoing multi-channel TPDO read-out sequence;
is called e.g. when the node is taken out of state Operational.

ELMB firmware framework v1.1 10-Mar-2004

10

• app_tpdo_scan()
is called in the main application loop to handle any ongoing multi-channel TPDO read-
out sequences.

• app_scan_next()
checks for the availability of data for the next channel in a multi-channel TPDO read-
out sequence, fills a message buffer with the data and sends the CAN message.

• app_sdo_read()
called by the SDO server (in sdo.c) to handle SDO read requests for objects in the Ob-
ject Dictionary concerning your application data and parameters; the current code in this
function is for demonstration purposes only; new object identifiers are preferably to be
added to file objects.h.

• app_sdo_write()
called by the SDO server (in sdo.c) to handle SDO write requests for objects in the
Object Dictionary concerning your application data and parameters; the current code in
this function is for demonstration purposes only; new objects identifiers are preferably
to be added to file objects.h.

• app_get_par()
called by app_sdo_read() to read data items from a particular object; the current
code in this function is for demonstration purposes only; there could be several func-
tions of this type in your code that each deal with different objects, all dependent on
how you structure your Object Dictionary and how data items are to be obtained.

• app_store_config()
stores up to 16 bytes of configuration parameters in permanent storage in EEPROM; de-
fine the number of bytes to store as APP_STORE_SIZE, in the source code defined just
above this function; is called when the appropriate CANopen message to store parame-
ters is received; the saved settings are read from EEPROM at every power-up or reset
(see app_load_config() below).
Note the difference between this type of storage and the storage of so-called 'working
copies' of certain (global) variables which can be enabled or disabled in the code by de-
fining _VARS_IN_EEPROM_, which serves to improve the rad-tolerance of the running
program and not to save your settings between resets. Variable AppChans demon-
strates its use.

• app_load_config()
reads the saved settings from EEPROM and uses them to initialize your current settings;
make sure to match the databytes saved by function app_store_config()and read
by function app_load_config().

Depending on your requirements it might be necessary to make changes and additions to

other files as well, for example if you want:
• to add new objects to the dictionary: objects.h
• to change the number of bytes in a particular PDO message: can.h
• to change the version string of your application: 1XXconf.h
• to add 'clients' for Timer0 time-out services (see below): timer1XX.h
• to use a sofar unused interrupt source, replace the default interrupt handler for it:

intrpt.c
• to store a new block of configuration parameters or to add run-time variables for

which a copy is kept in EEPROM (for increased rad-tolerance): store.c and
store.h

ELMB firmware framework v1.1 10-Mar-2004

11

To download new code to your ELMB we assume it is equipped with a Bootloader, either in

the ATmega128 processor (on the ELMB128), or in the shape of a second microcontroller (on
older ELMB103 types). The new code can be downloaded via the CAN-bus when the Boot-
loader is running.

There are 2 alternative ways to make the Bootloader the currently running ELMB application:
• power the ELMB off and then on; the Bootloader is now in control: it sends a CANopen

Bootup message (to be removed in a next Bootloader version), followed by a specific
Emergency message (see the list of Emergency Objects in section 5); the Bootloader
automatically jumps to the main application program (if it detects one) after 4 seconds,
unless you send it within those 4 s any CAN-message it is programmed to handle; it
then remains active and is ready to receive further programming instructions.

• if a CANopen application is in control of the ELMB (either the original ELMBio appli-
cation, the framework program or your framework-based CANopen application), you
can write to Object 5C00 (see Object Dictionary in section 4) to force the application to
jump to the Bootloader (now it does not automatically jump back to the main applica-
tion after 4 s).

ELMB firmware framework v1.1 10-Mar-2004

12

2.3 Some Useful General-Purpose Functions

2.3.1 Timer Functions

The ELMB’s ATmega128 microcontroller has 4 timers/counters (ATmega103 has 3 tim-
ers/counters). The framework uses Timers 0, 1 and 2, so Timer 3 is free for other purposes.
The timer functions can be found in files timer0.c, timer1.c and timer2.c, and the
constants and prototypes in timer1XX.h.

Timer0 is used for general-purpose time-outs on operations. It is configured to provide a

clocktick of 10 ms, so it works well for time-outs > 10 ms. A time-out can be set on any num-
ber of independent operations, by assigning a ‘client-identifier’ to each operation, a number
between 0 and the maximum number of ‘clients’. This maximum number of time-out clients
T0_CLIENTS must be set in timer1XX.h (is defined as 1 in the framework code).

Timer1 is used for not-so-frequent periodic operations. It is configured to provide a clock-

tick of 1 s. It is used for triggering Lifeguarding and Heartbeat operations, periodic PDO
transmissions and Watchdog Timer resets.

Timer2 is used for busy-wait delays of 10 µs and up (to 63 ms). For busy-wait delays < 10

µs use calls to ‘NOP()’ (see file general.h): each nop-instruction (‘no operation’) takes
0.25 µs, with the ATmega128 clocked at 4 MHz.

The listing below describes some of the general-purpose timer functions made available

through include file timer1XX.h.

void timer0_set_timeout_10ms(BYTE client, BYTE ticks)

Inputs

client : client identifier
ticks : number of 10 ms ticks

Outputs
none

Return value
none

Description
Set a time-out of ticks times 10 ms for a client with identifier
client (add client identifiers in timer1XX.h).
Time-out status to be checked by calling timer0_timeout(client).
Parameter ticks can have any value up to 255.
The actual time-out value t in ms is 10*(ticks-1)<=t<=10*ticks, so
ticks should always be chosen 1 larger than the actual required
minimum time-out, and only ticks >= 2 should be chosen; a maximum
time-out of 255*10 ms = 2.55 s can be set.

BOOL timer0_timeout(BYTE client)

Inputs

client : client identifier
Outputs

none

ELMB firmware framework v1.1 10-Mar-2004

13

Return value
Boolean which is true if a time-out has occurred.

Description
Must be called periodically to check if the time-out previously set
by timer0_set_timeout_10ms() has been reached.

void timer2_delay_mus(BYTE microseconds)

Inputs

microseconds: number of microseconds of required delay
Outputs

none
Return value

none
Description

Busy-wait delay of microseconds µs.
This routine is suitable for a delay of an even number of microsec-
onds from 10 up to 256 microseconds (an odd number of microseconds
gets rounded to the next even number).
NOTE: the overhead of this routine is about 7 microseconds (at 4
MHz), which is taken into account to achieve the desired delay.

void timer2_delay_ms(BYTE milliseconds)

Inputs

milliseconds: number of milliseconds of required delay
Outputs

none
Return value

none
Description

Busy-wait delay of milliseconds ms (actually 1.024 ms).
This routine is suitable for a delay of 1 up to 63 milliseconds
only.

ELMB firmware framework v1.1 10-Mar-2004

14

2.3.2 EEPROM Functions

File eeprom.c contains EEPROM byte-read and byte-write functions. Note that part of the
EEPROM is reserved by the framework for various purposes. See the next section for details.

Next follows a description of the EEPROM functions made available through include file
eeprom.h.

BYTE eeprom_read(BYTE addr)

Inputs
addr : EEPROM address

Outputs
none

Return value
data byte read from EEPROM address addr.

Description
Read a byte from ATmega128/ATmega103 EEPROM from an address up to
255 (FFh).

void eeprom_write(BYTE addr, BYTE byt)

Inputs
addr : EEPROM address
byt : byte value to be written

Outputs
none

Return value
none

Description
Write byte value byt to ATmega128/ATmega103 EEPROM address addr;
for addresses up to 255 (FFh).

BYTE eepromw_read(UINT16 addr)

Inputs
addr : EEPROM address

Outputs
none

Return value
data byte read from EEPROM address addr.

Description
Read a byte from any address in ATmega128/ATmega103 EEPROM
(up to address 4095 (FFFh)).

void eepromw_write(UINT16 addr, BYTE byt)

Inputs
addr : EEPROM address
byt : byte value to be written

Outputs
none

Return value
none

Description
Write byte value byt to ATmega128/ATmega103 EEPROM address addr;
for all addresses (up to 4095 (FFFh)).

ELMB firmware framework v1.1 10-Mar-2004

15

2.4 EEPROM Memory Map

Table 4 below details the layout of the ELMB’s EEPROM in the framework application.
Read the comment in files store.h and store.c for more details.

EEPROM ADDR
not used 0000
 0001

ELMBfw

configuration

parameters

 00A0
Rad-tolerant 00A1

working copy

of global

settings

and

parameters 00E0

 00E1
not used
 00FF
ELMB 0100

Serial

Number 0106

reserved 0107
 0108
not used
 011F
 0120
ELMB

Analog-in

calib consts
 01CF
 01E0

not used

 0FFF

Table 4. EEPROM memory map within the ELMBfw framework application.

2.5 List of Files
…list of files and per file short description of content…to be done…

Holds permanently saved application configu-
ration and settings, stored in up to 8 blocks of
up to 16 bytes each; includes a CRC checksum
for each data block.

Holds a copy of most application configura-
tion and settings and some other parameters
that don't change very often; parameters are
reread from EEPROM each time before being
used; this is an optional feature to counter the
effects of SEE (Single Event Effects)

DESCRIPTION

Holds the ELMB Serial Number given to it at
production time; serves to uniqely identify the
ELMB and retrieve its calibration constants
and/or production data in the offline database.

Holds the calibration constants, which were
determined at production time, for all 6 volt-
age ranges (note: only present for ELMBs
with an analog input part).

Free for other purposes (3616 bytes).

ELMB firmware framework v1.1 10-Mar-2004

16

3 How it works

3.1 Setting CAN Node Identifier and Baudrate

Using the ELMB's onboard DIP-switches a node identifier can be set between 1 and 63 (has
to be unique on the CAN-bus the board is on), using 6 of the 8 switches, and a CAN-bus
baudrate of 50, 125, 250 or 500 Kbit/s, using the 2 remaining switches. See Figure 2 below for
details. (Note: if your ELMB contains Bootloader version 1.3 or later, it is possible to imple-
ment a remotely configurable, i.e. via CAN messages, node identifier, an identifier which is
no longer taken from the DIP-switch settings but stored in and read from the ELMB's
EEPROM; for details contact author).

Figure 2. Location and function of ELMB DIP-switches and programming connector.

Figure 1 also indicates the connector to which the special Programmer-and-RS232-adapter
(schematic available 1) is connected, enabling serial In-System-Programming of the ELMB by
e.g. a host PC and also enabling RS232 output by the ELMB ATmega128 processor (for de-
velopment and test purposes).

3.2 Initialisation

After power-up, watchdog reset, manual reset or a CANopen initiated reset action (i.e. by an
NMT Reset-Node message, see below) a CANopen node sends a socalled Boot-up message
(as defined by the CANopen standard) as soon as it has finished initialising (hardware, soft-
ware); this is a CAN-message with the following syntax:

ELMB (NMT-Slave) → Host (NMT-Master)
COB-ID DataByte 0

700h + NodeID 0

1 see http://atlasinfo.cern.ch/ATLAS/GROUPS/DAQTRIG/DCS/LMB/SB/index.html

 ELMB top side

Node-ID
(up=0, down=1; shown here = 17)
Bits : 5 4 3 2 1 0

1 2 3 4 5 6 7 8

CAN
baudrate

50 kbit/s

125 kbit/s

250 kbit/s

500 kbit/s

Programmer/RS232 adapter connector

AT-
mega
1xx

ELMB firmware framework v1.1 10-Mar-2004

17

NodeID is the CAN node identifier set by means of the ELMB onboard DIP-switches, which
according to the CANopen standard must be in the range between 1 and 127 and in the frame-
work can be to set to a value between 1 and 63, as shown in Figure 2.

To start the application in the CANopen sense of the word, the following CANopen NMT

(Network ManagemenT) message must be sent:

Host (NMT-Master) → ELMB (NMT-Slave)
COB-ID DataByte 0 DataByte 1

000h 1
(Start_Remote_Node)

NodeID or 0
(all nodes on the bus)

There is no reply to this message.

Now the application is Operational, meaning that it monitors I/O channels as required and

sends and receives (and processes) PDO messages (carrying the application data)), depending
on the specific application.

Optionally a feature called auto-start may be enabled, so that the application automatically

goes to Operational state after power-up or reset. The auto-start feature can be configured in
OD index 3200h, subindex 2.

To generate a soft reset to the application the following CANopen NMT message must be

sent:

Host (NMT-Master) → ELMB (NMT-Slave)
COB-ID DataByte 0 DataByte 1

000h 1
(Reset_Node)

NodeID or 0
(all nodes on the bus)

Again, there is no reply to this message.

Note that at power-up it is the Bootloader that becomes active first; it reports its presence by

sending the following Emergency message (see also section 5):

Bootloader → Host
COB-ID Byte 0-1 Byte 2 Byte 3-7
080h +
NodeID

Emergency
Error Code
(00h 50h)

Error Register
(Object 1001h)

(80h)

Manufacturer specific error field
(FEh 01h 28h ZZh 00h)

(ZZh = MCUCSR)

(MCUCSR = MCU Control and Status Register; for details see the ATmega128 datasheet).

After about 4 s the Bootloader automatically jumps to the application. The Bootloader jumps

immediately to the application, if it receives an NMT Reset-Node message, as shown above.

3.3 Node Guarding and Life Guarding

Node Guarding in CANopen is a mechanism whereby an NMT-master checks the state of
other nodes on the bus, at regular intervals. It can do this in one of two different ways:

ELMB firmware framework v1.1 10-Mar-2004

18

1. The master sends a Remote Transmission Request (RTR) for the Node Guard message,
to each node on the bus, in turn; a node that receives the RTR, sends the Node Guard
message, which contains one data byte indicating the (CANopen) state of the node, as
well as a toggle bit. If a node does not reply the master should signal this to the higher-
level software and/or take appropriate action.
The RTR for the Node Guard message looks like this (a Remote Frame, so the CAN-
message has no data bytes):

Host (NMT-Master) → ELMB (NMT-Slave)
COB-ID

700h + NodeID

The reply Node Guard message from a node looks like this:

ELMB (NMT-Slave) → Host (NMT-Master)
COB-ID DataByte 0

700h + NodeID bit 7: toggle bit,
bit 6-0: state

2. Each node on the bus sends a Heartbeat message at regular intervals; typically, the

NMT-master monitors these messages and keeps a time-out period for each node. The
master detects nodes that stop sending their Heartbeat messages and should signal this
to the higher-level software and/or take appropriate action.
A Heartbeat message looks like this:

ELMB (Heartbeat producer) → Consumer(s) (e.g. NMT-Master)
COB-ID DataByte 0

700h + NodeID state

State is one of these CANopen states: 0 (Initializing), 4 (Stopped), 5 (Operational) or 127
(Pre-operational). Note that this makes the Boot-up message the first Heartbeat message after
a node reset (see previous section).

According to the CANopen standard, a node is not allowed to support both Node Guarding
and Heartbeat protocols at the same time. The framework application supports both methods
of Node Guarding (but indeed not at the same time), i.e. it can send the Node Guard message
or it can send the Heartbeat message with an interval, which is configurable in OD index
1017h.

Life Guarding in CANopen is a mechanism whereby a node checks the aliveness of the host
or master, by applying a time-out on messages received. CANopen defines that the message to
time-out is the RTR for the Node Guard message, sent by the NMT-master; however, the
framework application resets its Life Guarding timer at each properly received message ad-
dressed to it.

Life Guarding is controlled through OD objects 100Ch and 100Dh. In the framework appli-
cation the Life Guarding time-out can be set between 1 and 255 seconds, by setting OD index
100Dh to the corresponding value, or can be switched off, by setting OD index 100Dh to zero.

If a Life Guarding time-out occurs, the node should take whatever appropriate action. The
framework application resets and reinitializes the CAN-controller, and (tries to) resume(s)
normal operation, after sending an Emergency message (see section 5).

ELMB firmware framework v1.1 10-Mar-2004

19

3.4 Accessing the Object Dictionary using SDO Messages

At any time after initialisation (except when the node is in Stopped state) SDO messages can
used to read from and write to the Object Dictionary. The Object Dictionary of the framework
is listed in the tables in section 4. The framework supports Expedited Transfer only, i.e. data
items read or written must have a size of 4 bytes or less).

3.5 Data Read-out using PDO Messages

When the ELMB application is in Operational mode the most efficient way of communicat-
ing application data is by means of PDO messages, which carry very little overhead and re-
quire no confirmation from the receiving side.

The framework supports 4 RPDOs (ELMB is receiver of the data) and 4 TPDOs (ELMB is

the sender of the data). The framework receives the RPDOs and sends the TPDOs (depending
on the trigger and on the PDO's transmission mode), but the data is dummy and is not used to
set any hardware (in the case of an RPDO) or is obtained from any hardware (in the case of a
TPDO). This needs to be filled in further by the framework user.

3.6 Storing Parameters and Settings in Non-Volatile Memory

Parameters and settings can be stored permanently onboard in non-volatile memory
(EEPROM) by writing string "save" to OD index 1010h. The CANopen SDO mechanism is
used to do this:

Host → ELMB
DataByte COB-ID 0 1 2 3 4 5 6 7

600h +
NodeID

23h 10h 10h subindex 73h
('s')

61h
('a')

76h
('v')

65h
('e')

with OD index 1010h in byte 1+2 and subindex in byte 3 with subindex:

= 1: store all parameters (as listed for subindex 2 and 3).
= 2: store communication parameters (concerning PDO and Guarding).
= 3: store application parameters (concerning ADC, DAC and Digital I/O).

(check out the Object Dictionary tables in section 4 to find out which parameters are stored).

If the store-operation succeeded the application ends the following reply:

ELMB → Host
DataByte COB-ID 0 1 2 3 4 5 6-7

580h +
NodeID

60h 10h 10h subindex – – –

ELMB firmware framework v1.1 10-Mar-2004

20

If the store-operation did NOT succeed the application sends the following reply (SDO
Abort Domain Transfer, error reason: ‘hardware fault’ (for details see [1])):

ELMB → Host
DataByte COB-ID 0 1 2 3 4 5 6 7

580h +
NodeID

80h 10h 10h subindex 0 0 6
(Error Code)

6
(Error Class)

Parameters can be reset to their default values (by invalidating the corresponding contents of

the EEPROM) by writing to OD index 1011h, using this time the string "load" (6Ch, 6Fh,
61h, 64h) in bytes 4 to 7 of the SDO. Note that the default values take effect only after a sub-
sequent reset of the node. Default values are listed in the OD tables in section.4

The tables with the Object Dictionary in section 4 show the settings stored in EEPROM as

marked by an asterisk (*).

4 Object Dictionary

The Object Dictionary (OD) of the ELMBfw v2.0 framework application is listed in the ta-
bles on the next pages. Objects can be read or written using CANopen SDO messages.

The values of objects marked with '∗' in the Index column are stored in EEPROM for per-

manent non-volatile storage, on request (as described in section 3.6). They are retrieved from
EEPROM at each reset or power-up and used to initialize the application.

Objects in the tables with a shaded (yellow) background (may) require changes and addi-
tions by a framework user.

Objects marked “EXPERT ONLY” are in principle ‘for experts only’, but it is safe to read
any such Object if marked as Readable (R). If for any reason the data stored in these Objects
is lost (and you need it for your application), please contact the ATLAS DCS team.

ELMB firmware framework v1.1 10-Mar-2004

21

Communication Profile Area
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

1000 - Device type U32 RO 00000000h Meaning: no CANopen device

profile supported;
mandatory CANopen object

1001 - Error register U8 RO 0
1002 - Manufacturer status register U32 RO 0 1 (see footnote)

1008 - Manufacturer device name String RO "ELMB" = Embedded Local Monitor Board
1009 - Manufacturer hw version String RO "el40" = ELMB V4
100A - Manufacturer software

version
String RO "FW20" ELMBfw application version 2.0

100C - Guard time [ms] U16 RO 1000 = 1 second
100D

*
- Life time factor U8 RW 0 lifeguarding timeout in seconds;

0 → no lifeguarding timeout

1010 Store parameters Array Save stuff in onboard EEPROM
 0 Highest index supported U8 RO 3
 1 Save all parameters U32 RW 1 Read: 1; Write "save": store all
 2 Save communication pa-

rameters
U32 RW 1 Read: 1; Write "save": store

PDO par's, Life time factor, …
 3 Save application par's U32 RW 1 Read: 1; Write "save": store ap-

plication configuration

1011 Restore default parameters Array Invalidate stuff in onboard
EEPROM; use defaults afterwards

 0 Highest index supported U8 RO 3
 1 Restore all parameters U32 RW 1 Read: 1; Write "load": invalidate

all parameters stored
 2 Restore communication

parameters
U32 RW 1 Read: 1; Write "load": invali-

date stored PDO par's, etc.
 3 Restore application par's U32 RW 1 Read: 1; Write "load": invali-

date stored application config

1017
*

- Producer Heartbeat Time
[1 s]

U16 RW 0 In units of seconds (but <=255 !),
(NB: should be in ms according to
CANopen!);
0 → Heartbeat is disabled

1018 Identity Record Mandatory CANopen object

 0 Number of entries 1..4 RO 1
 1 Vendor ID U32 RO 12345678h to be ordered from CiA

1 Manufacturer Status Register contains the application-specific error bits.

ELMB firmware framework v1.1 10-Mar-2004

22

Communication Profile Area (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

1400 1st Receive PDO par's Record Data type = PDOCommPar

 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 200h +

NodeID
According to CANopen Prede-
fined Connection Set

 2 Transmission type U8 RO 255 Only 255 allowed
 3,5 Not used RO 0

1401 2nd Receive PDO par's Record (as above, with COB-ID 300h)
1402 3rd Receive PDO par's Record (as above, with COB-ID 400h)
1403 4th Receive PDO par's Record (as above, with COB-ID 500h)

1600 1st Receive PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2
 1 Digital outputs 1-8

(Example: object referred
to does not exist)

U32 RO 62000108 OD index 6200, sub-index 1:
Outputs 1-8, size = 8 bits

 2 Digital outputs 9-16
(Example: object referred
to does not exist)

U32 RO 62000208 OD index 6200, sub-index 2:
Outputs 9-16, size = 8 bits

1601 2nd Receive PDO mapping Record
1602 3rd Receive PDO mapping Record
1603 4th Receive PDO mapping Record

1800 1st Transmit PDO par's Record Data type = PDOCommPar

 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 180h +

NodeID
According to CANopen Prede-
fined Connection Set

* 2 Transmission type U8 RW 1 Only 1 and 255 allowed
 3 Inhibit time [100 µs] U16 RO 0 not used

* 5 Event timer [1 s] U16 RW 0 In units of seconds
(NB: should be in ms according
to CANopen!); active if >0 and
transmission-type = 255

1801 2nd Transmit PDO par's Record (as above, with COB-ID 280h)
1802 3rd Transmit PDO par's Record (as above, with COB-ID 380h)
1803 4th Transmit PDO par's Record (as above, with COB-ID 480h)

1A00 1st Transmit PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2
 1 Digital inputs 1-8

(Example: object referred
to does not exist)

U32 RO 60000108 OD index 6000, sub-index 1:
Inputs 1-8, size = 8 bits

 2 Digital inputs 9-16
(Example: object referred
to does not exist)

U32 RO 60000208 OD index 6000, sub-index 2:
Inputs 9-16, size = 8 bits

1A01 2nd Transmit PDO mapping Record
1A02 3rd Transmit PDO mapping Record
1A03 4th Transmit PDO mapping Record

ELMB firmware framework v1.1 10-Mar-2004

23

Manufacturer-Specific Profile Area (continued…)
Index
(hex)

Sub
Index

Name Data/
Object

Attr Default

Comment

2000 Any application-specific

settings
Array This Object has been added as

an example only: see source
code for handling reading and
writing to the Object Dictionary

 0 Number of entries U8 RO 1
 1 Number of channels U16 RW 4

 … … … … …
 … … … … In the Index range 2000-5FFF a

user can add any Objects needed
for his application

… … … … … …

ELMB firmware framework v1.1 10-Mar-2004

24

Manufacturer-Specific Profile Area (continued…)
Index
(hex)

Sub
Index

Name Data/
Object

Attr Default

Comment

2A00 ADC range calibration Array EXPERT

ONLY
For now triggers a ‘pure’ self-
calibration procedure only 1

 0 Number of entries U8 RO 6
 1 Calibrate 25 mV U32 WO Write any value…
 2 Calibrate 55 mV U32 WO Write any value…
 3 Calibrate 100 mV U32 WO Write any value…
 4 Calibrate 1 V U32 WO Write any value…
 5 Calibrate 2.5 V U32 WO Write any value…
 6 Calibrate 5 V U32 WO Write any value…

2B00 ADC calibration parameters

25 mV
Array Calibration constants

(always stored in EEPROM);
enable by first writing to 2D00

 0 Number of entries U8 RO 4
* 1 Gain Factor phys. chan. 1 U32 RW actual gain factor * 1000000
* 2 Gain Factor phys. chan. 2 U32 RW actual gain factor * 1000000
* 3 Gain Factor phys. chan. 3 U32 RW actual gain factor * 1000000
* 4 Gain Factor phys. chan. 4 U32 RW actual gain factor * 1000000

2B01 ADC calibration parameters
55 mV

Array Calibration constants (as above)

2B02 ADC calibration parameters
100 mV

Array “

2B03 ADC calibration parameters
1 V

Array “

2B04 ADC calibration parameters
2.5 V

Array “

2B05 ADC calibration parameters
5 V

Array “

2C00 - Erase ADC calibration pa-

rameters 25 mV
U8 WO EXPERT

ONLY
Write EEh to erase;
enable by first writing to 2D00

2C01 - Erase ADC calibration pa-
rameters 55 mV

U8 WO EXPERT
ONLY

“

2C02 - Erase ADC calibration pa-
rameters 100 mV

U8 WO EXPERT
ONLY

“

2C03 - Erase ADC calibration pa-
rameters 1 V

U8 WO EXPERT
ONLY

“

2C04 - Erase ADC calibration pa-
rameters 2.5 V

U8 WO EXPERT
ONLY

“

2C05 - Erase ADC calibration pa-
rameters 5 V

U8 WO EXPERT
ONLY

“

2D00 - Enable calibration parame-

ter write/erase operation
U8 WO EXPERT

ONLY
Writing 0xA5 enables one write
or erase operation to any of the
Objects 2B00 to 2B05
or 2C00 to 2C05.

1 In other words: reset the ADC and do a ‘self-calibration’, i.e. do NOT apply the gain factors (‘calibration con-
stants’), which might have been downloaded to EEPROM already. This type of ADC initialisation is essential
when recalibrating the voltage range in question.

ELMB firmware framework v1.1 10-Mar-2004

25

Manufacturer-Specific Profile Area
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

3000 Calculate 16-bit CRC Array
 0 Number of entries U8 RO 2
 1 CRC of Master's program

code in FLASH
U16 RO 0 SDO reply unequal to zero

means there is a checksum error;
absence of CRC results in SDO
Abort with Error Code 1;
error while accessing FLASH
results in SDO Abort with Error
Code 6.

 2 CRC of Slave's program
code in FLASH

U16 RO 0 Idem (only forELMB103 with
ATmega103 + slave processor)

 3 Get (Master code) CRC U16 RO Return CRC from flash

3100 - ELMB Serial Number U32 RW Number or 4-byte string
uniquely identifying an ELMB,
given during production.

3101 - Enable ELMB Serial Num-
ber write operation

U8 WO EXPERT
ONLY

Writing 5Ah enables one write
operation on the Serial Number
(Object 3100).

3200 CAN-controller settings Array
 0 Number of entries U8 RO 3

* 1 Disable Remote Frames U8 RW 0 1
* 2 Enable auto-start U8 RW 0 If =1 go to Operational at startup
* 3 Bus-off max retry counter U8 RW 5 A counter is decremented every

1 s and incremented every time
bus-off occurs, but if it reaches
this maximum value the node
abandons regaining CAN-bus
access at bus-off; if value=255
the node retries indefinitely.

5C00 - Compile Options U32 RO Bitmask denoting which compile

options were used when the ap-
plication was generated
(see table below for details)

5DFF ELMB Tests Array EXPERT

ONLY
For use in ATLAS DCS produc-
tion and test stand only

 0 Number of test objects U8 RO 1
 1 Test of I/O-pins U32 RO see description in another doc

1 Due to the way the ELMB’s CAN-controller handles Remote Frames, it is recommended to disable Remote
Frames permanently if not needed (for PDO read-out). A special provision in the software has been made to en-
sure that the Node Guard Remote Frame is still handled properly.

ELMB firmware framework v1.1 10-Mar-2004

26

Manufacturer-Specific Profile Area
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

5E00 - Transfer control to Boot-

loader (or ELMB103
Slave-processor)

U8 WO It takes a few seconds (ca. 4 s)
before the Slave processor takes
control (ELMB103) ; transfer to
the Bootloader is immediate
(ELMB128)

5F50 Download ELMB103

Slave Program Data
Array For reprogramming the ELMB

AT90S2313 Slave processor
 0 Number of supported pro-

grams
U8 RO - not implemented

 1 Program number 1 U32 WO Data bytes contain one read /
write instruction (for a single
byte) for microcontroller's
FLASH or EEPROM memory,
according to the AT90S2313
Serial Programming Instruction
Set (see AT90S2313 datasheet)

Object 5C00: Compile Options
Bit Compile Option Comment

0 – –
1 – –
2 – –
3 – –
4 – –

5 _7BIT_NODEID_

only DIP-switch 1 used for CAN baudrate (125 or 250 kbaud);
other 7 switches used for setting Node-ID: 1-127 (when this option is not set a 6-
bit Node-ID is used and 2 bits are used for selecting a baudrate)
NB: do not use, as it clashes with the DIP-switch usage by the Bootloader.

6 – –

7 _ELMB103_ the ELMB is an ELMB103 type (with ATmega103 processor); by default an
ELMB128 (with ATmega128 processor) is assumed

8 _VARS_IN_EEPROM_ store/retrieve working copies of configuration parameters in/from EEPROM;
this increases the radiation-tolerance of the firmware

9 – –

10 _INCLUDE_TESTS_ include an OD object through which (board) tests can be executed;
may be useful when an ELMB is removed for repairs

11 – –

12 _CAN_REFRESH_ refresh CAN-controller descriptor register (at each buffer write/read);
this increases the radiation-tolerance of the firmware

13 _2313_SLAVE_PRESENT_
there is (probably) a Slave processor (usually when using an ELMB103, so in
combination with compile option _ELMB103_);
this includes the code that deals with the Slave processor

Table 5. Optional compiler macro defines.

ELMB firmware framework v1.1 10-Mar-2004

27

5 Emergency Objects

Emergency messages are triggered by the occurrence of an internal (fatal) error situation. An
emergency CAN-message has the following general syntax:

ELMB → Host
COB-ID Byte 0-1 Byte 2 Byte 3-7
080h +
NodeID

Emergency
Error Code

Error Register
(Object 1001h)

Manufacturer specific error field

The following Emergency messages can be generated by the ELMBfw framework applica-

tion:

Error
Description

Emergency
Error Code

(byte 0-1)

Manufacturer-Specific Error Field
(byte 3-7)

CAN communication 8100h Byte 3: 81C91 Interrupt Register content

Byte 4: 81C91 Mode/Status Register content
Byte 5: error counter

CAN buffer overrun 8110h CAN message buffer in RAM full: at least 1 message was lost

Life Guarding time-out 8130h (CAN-controller has been reinitialized)

RPDO: too few bytes 8210h Byte 3: minimum DLC (Data Length Code) required

Slave processor not re-
sponding

5000h Byte 3: 20h

CRC error 5000h Byte 3: 30h

Byte 4: 1 (Master FLASH), 2 (Slave FLASH)

EEPROM: write error 5000h Byte 3: 41h

Byte 4: Parameter block index 1
Byte 5: 0 : writing block info
 > 0: size of parameter block to write

EEPROM: read error 5000h Byte 3: 42h
Byte 4: Parameter block index 1
Byte 5: Error id (1=CRC, 2=length, 4=infoblock)

Irregular reset 5000h Byte 3: F0h

Byte 4: microcontroller MCUCSR register contents 2

No Bootloader 5000h Byte 3: F1h

…table continues on the next page…

1 0: TPDO communication parameters, 1: RPDO communication parameters, 2: Guarding parameters,

3: CAN configuration parameters, 4: Application configuration,
FEh: Calibration constant(s), FFh: ELMB Serial Number.

2 ATmega128 MCUCSR register bits: 01h: Power-On Reset, 02h: External Reset, 04h: Brown-Out Reset,
08h: Watchdog Reset, 10h: JTAG Reset, 80h: JTAG Interface Disable

ELMB firmware framework v1.1 10-Mar-2004

28

Error

Description
Emergency
Error Code

(byte 0-1)

Manufacturer-Specific Error Field
(byte 3-7)

Bootloader is in control 1 5000h Byte 3: FEh

Byte 4: 01h
Byte 5: 28h
Byte 6: microcontroller MCUCSR register contents 2
Byte 7: 00h

Bootloader cannot jump to
application: invalid 1

6000h Byte 3: FEh
Byte 4: AAh
Byte 5: AAh

Byte 2 of the Emergency message contains the value of the socalled Error Register (Object

Dictionary index 1001h, a mandatory CANopen object). One or more bits of the 8-bit Error
Register can be set to 1, depending on the node's history of errors since the last reset. The ta-
ble below gives a description of the meaning of the different bits.

Error Register (Object 1001h) bits
Bit Error type
0 Generic
1 Current
2 voltage
3 Temperature
4 Communication
5 device profile specific
6 reserved (=0)
7 manufacturer specific

References

[1] CAN-in-Automation e.V.,

CANopen, Application Layer and Communication Profile,
CiA DS-301, Version 4.0, 16 June 1999.

[2] H.Boterenbrood,

CANopen Application Software for the ELMB128,
Version 2.1, NIKHEF, Amsterdam, 2 March 2004.
(http://www.nikhef.nl/pub/departments/ct/po/html/ELMB/ELMB21.pdf

[3] ELMB software resources webpage:

http://www.nikhef.nl/pub/departments/ct/po/html/ELMB/ELMBresources.html

1 This Emergency message is generated by the Bootloader.
2 ATmega128 MCUCSR register bits: 01h: Power-On Reset, 02h: External Reset, 04h: Brown-Out Reset,

08h: Watchdog Reset, 10h: JTAG Reset, 80h: JTAG Interface Disable

http://www.nikhef.nl/pub/departments/ct/po/html/ELMB/ELMB21.pdf
http://www.nikhef.nl/pub/departments/ct/po/html/ELMB/ELMBresources.html

	Introduction
	Hardware
	Software

	Using the Framework
	Introduction
	Adding Your Code
	Some Useful General-Purpose Functions
	Timer Functions
	EEPROM Functions

	EEPROM Memory Map
	List of Files

	How it works
	Setting CAN Node Identifier and Baudrate
	Initialisation
	Node Guarding and Life Guarding
	Accessing the Object Dictionary using SDO Messages
	Data Read-out using PDO Messages
	Storing Parameters and Settings in Non-Volatile Memory

	Object Dictionary
	Emergency Objects
	References

